CN violet -band emission as a time-resolved optical probe of
transient temperature, induced by laser ablation of type I collagen
from bovine Achilles tendon
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ABSTRACT

The B 2Z*—=X ’T* violet band emission spectrum of CN following laser ablation of type I collagen was exploited for_
the estimation of the transient temperature of the plasma plume and consequently of the sample surface considering
thermodynamic equilibrium. The temperature dependence upon experimental parameters, such as laser intensity and
wavelength as well as delay of gated detection was obtained. The temperatfire was found to increase with increasing
laser intensity and decrease with increasing gated time delay and laser wavelength.
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1. INTRODUCTION

The CN violet system (B 25*_3X 25*) has been thoroughly studied by various techniques of molecular spectroscopy due
to its importance as a free radical occurring in many emission sources even in the presence of traces of the elements
involviq'. CN molecules were found to exist in the sun', stellar atmosphcn:s:. comets’, dark and diffuse interstellar
clouds ™.

In the recent years there has been a rapidly growing interest in the study of the composition and evolution of Laser
Induced Plasma (LIP) from graphite in the effort towards deposition of diamond-like carbon thin films®”. In this context
species existing in the formed plasma, originating from recombination, such as C. and CN and their emission bands
have served as potential plasma diagnostics. These excited diatomic species have shown to be formed by a secondary
photolysis of the initial products®. Several attempts have also been made to investigate the spatial and temporal

* variations of the plasma based on the optical emission of C, Swan bands and the CN violet (B 55X ") and red

186

(A “T1—X £*) bands as observed and analyzed in different regions of the plasma plume'*"*.

Collagen is the most widespread structural protein amongst higher vertebrates and in particular collagen type I accounts
for the 80% of the content of the dermis. It is thus the main means of structural support and during laser surgical
ablation collagen is locally evaporated to achieve a lancet-like incision in the area of interest. The transient temperature
achieved at the ablation spot is of utmost importance, as from this the equilibrium temperature can be derived
depending on the temporal characteristics and the wavelength of the ablating laser irradiation.

In the current work, collagen type 1 from Achilles bovine tendon has been used as a tissue model for the study of CN
violet bands optical emission during the ablation by nanosecond pulsed laser radiation. The vibrational temperature of
the CN radical has been extracted for three laser wavelengths, namely 355, 532 and 1064nm for varying laser pulse
energies and observation delay times. The results discussed in detail in the text are compatible with Local
Thermodynamic Equilibrium (LTE) from a hot source (plasma) with a consistent temporal cooling pattern for varying
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laser parameters. The wavelength dependence, for various times of observation and various laser intensities, indicates
higher vibrational temperatures with decreasing laser wavelength.

2. EXPERIMENTAL PROCEDURE

The ablation target was type I collagen from bovine Achilles tendon (Fluka 27662). A standard KBr pelletser (C30
Research and Industrial Instruments Company, UK) was used to exert 10-ton pressure on 100mg of collagen fibres, thus
forming a uniform disc of lem diameter with thickness of about 0.5 mm. This target was mounted on a X-Y translation
stage (NEAT) with computer-driven stepper motors. The computer program was programmed to execute a meander-like
movement as a combination of 7 Il-like patterns. After each such meander sequence the stepper motor returned to its
origin to execute the routine again. The purpose of this target movement was to avoid non-uniform pitting of the target
surface. .

The experimental set-up is shown in Fig. 1. The ablating radiation was provided by a Quantel Mo. YG581 nanosecond.
Q-switched laser at 10Hz repetition rate. The laser was operated in its fundamental wavelength 1064 nm as well as in
the second and third harmonics at 532 and 355 nm respectively. The laser beam was focused by a focal length FL=15
cm lens on the target surface, which was placed about 1.5 cm before the focal point of the lens. In this manner the
circular beam spot on the sample had a diameter of 1.4 mm. The pulse energies used were 35 and 55 mJ at 1064 nm, 20.
35 and 55 mJ at 532nm and 20, 35 mJ at 355 nm. The optical plasma emission was collected by a 0.6 mm core quartz
fibre (CVI) placed at a distance of ca 5 mm and at 45° to the normal of the ablated surface that coincided with the
plasma propagation axis. In the present wotk, ablation of collagen took place under atmospheric conditions in contrast
to the majority of the referred studies on graphite samples that were performed in vacuum. This was done to simulate
the conditions during laser ablative surgery. The implication of this is that the plasma in our case was confined to a
smaller area. Given the geometry of the fibre as described above, the latter was able to collect the overall optical signal
of the plasma plume. The collected signal was directed and focused with use of a quartz lens into the 250 um entrance
slit of a HRP Jobin-Yvon monochromator. A 20 nm spectral window around the central wavelength (fixed throughout
the experiments to 392.5nm) of the monochromator was detected by a Mo. 1420 vidicon detector of an EG&G Mo.
1460 optical multi-channel analyser (OMA) III. The detector was gated by a EG&G Mo. 1211 high voltage pulse
generator. The gate delay with respect to the laser pulse and gate width, were displayed on a 2467 Tektronix
oscilloscope. A fast photodiode recorded 10% of the laser signal and its output was fed into the second channel of the
oscilloscope. Throughout the experiments delay times of 1, 2, 3 and 4 us with respect to the laser pulse were selected
while the gate width was kept fixed at 1us.
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Fig. 1: Experimental set-up.
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The OMA was operated in the accumulative mode: initially 150 scans were recorded with the laser beam blocked and 1
the accumulated signal was stored in memory and served as background. Then another 150 scans were registered with
the beam block removed and the background was subtracted from this signal pixel by pixel to vield the spectra for -‘
further processing. The spectra obtained in this manner were stored in a PC to which the OMA was interfaced.
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3. THEORETICAL BACKGROUND

At moderate resolution electronic transitions of diatomic molecules exhibit band structures that are attributed to
numerous vibrational levels. Molecules which are in a certain vibrational level, v", of their excited electronic state, can
decay to various vibrational levels of the lower electronic state, v”, each of these transitions rendering an
experimentally measured intensity 1,7~ . When the transition probabilities are known, the intensity ratio of two :
vibronic transitions can yield the vibrational temperature, assuming a Boltzmann distribution as follows:
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In the above equation G(v")and G(w”) are the term values of the upper vibrational levels v"and w’ respectively,
calculated from ref. 13, k is the Boltzmann constant and A, »and A, ~are the Einstein spontancous emission

coefficients. Ty, is the vibrational temperature of the diatomic molecule. In principle, in this equation, the integrated
intensity over all the rotational substructure of the band should be used. However since in our experiments the rotational
structure was not resolved, the band peak intensity was used instead. A correlation factor, or ratio of the integrated band

intensity over the band peak intensity, FCO,.,.(V'V”) _is defined in ref. 14. There it is also shown that for a band system

for which the wavelength does not spread too far and for large instrumental broadening — as in our case — this
correlation factor can be treated as a constant. Furthermore, any error deriving from this approximation should- be

minimised, since it would appear in the form of the ratio F o, (v'v")] Fo oy (Ww”), which is very close to unity.

4. RESULTS AND DISCUSSION.

A characteristic spectrum of the CN violet (B 2Z*—X2r") as registered according to the previously described
experimental set-up for 55 mJ laser pulse energy at 1064 nm appears in Fig. 2.
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Fig. 2.: A characteristic CN violet band spectrum, as registered at 55mJ/pulse, 1064 nm laser irradiation.




The largest peak at 388.3 nm corresponds to the 0—0 vibronic transition of CN, the peak centered at 387.2nm
corresponds to the 1—1 vibrational transition and the peaks at 386.2 and 385.6nm correspond to the 2—2 and 3—3
transitions respectively. From the intensity ratios of these peaks and their spontaneous emission Einstein coefficients as
taken from ref. 15. one can derive the excited state vibrational temperature assuming Boltzmann statistics according to
eg. (1). The vibronic temperatures were extracted from the intensity ratios /o /7y, . Igo/12y and 1o/ . The
error was calculated as the standard deviation of the mean value obtained by the above three intensity ratios. This was
found comparable to the value that would be derived by taking 10% error in the emission intensities and 5% uncertainty
in the Einstein coefficients as given in ref 15. The calculated vibronic temperatures for the various experimental
parameters selected, are listed in Table 1 below.

Vibrational Temperature of CN (°K)

Del 355nm 532nm 1064nm
ay 20mJ/pulse | 35mtipulse | 20mJ/pulse | 35ml/pulse | S5mIipulse | 35md/pulse | 55mt/puise
lps | 27600+3000 | 38400+6950 | 29000+1750 | 32400+2050 | - 257002500 | 38200+2900

2us | 185002100 | 2500042650 | 19900+1800 | 211004800 32400£6700 | 17200x1000 | 247001600
3us | 1720021950 | 22000£2600 | 17000+2000 | 18100£1050 | 25900£2200 | 139001600 | 21300+1000
4us | 145002687 | 17700£2000 | 14000£1100 | 14900+1200 | 21200£1900 | 12700+1000 | 194001000

Table 1: Calculated vibrational temperatures of CN, for various experimental parameters.

In Fig. 3 the plot of the dependence of the calculated vibronic temperatures upon the laser pulse energies is presented
for sample ablation by 532 nm laser radiation. The temperature values in this graph are normalised to the higher value,
always corresponding to the pulse energy of 55 mJ and the data sets for different gating delays, namely 2, 3 and 4 ps are
denoted by different symbols. The increase of the vibrational temperature of the CN molecules with laser irradiance
shows that comparatively larger numbers of molecules are excited into higher vibrational levels with increasing laser
irradiance.
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Fig. 3: Vibrational temperature dependence upon laser (A=532 nm) pulse energy. The temperature values are normalised to the
corresponding value for E=55 mJ/pulse.
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Within experimental errors, the data from the three different delay times seem to be consistent, following the same
pattern and the temperature value corresponding to 35 mJ pulse energy seems to be 65-70% that corresponding to 55mJ
pulse energy. Accordingly the temperature value corresponding to the 20mJ pulse energy seems to be 61-65% the value
of that at 55mJ/pulse. It is evident from the figure that there is a knee in the corespondent curve after the value of 35
mJ/pulse and this nonlinear effect is consistent at various delay times. This effect indicates the onset of threshold non-
linear phenomena such as self-focusing. The self-focusing of laser beams propagating in plasma occurs when the Debye

length /11). which is the characteristic screening length of the plasma. is less than the laser diameter. More specifically
when:

(2)

1
K d g /2
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In the above equation, ky is the Boltzmann constant, T, is the average electronic plasma temperature, N, is the
equillibrium concentration, €, is the permeativity, ¢ is the electron charge and D, is the laser beam waist. Such self-
focusing in the plasma increases the effective laser power density leading to enhanced optical emission.

The appearrance of the CN vibrational bands the in plasma plume is due to the recombination of ionic, molecular and
atomic carbon with nitrogen molecules from the surrounding atmosphere. There have been numerous studies of the
dependence of the formation of the CN radical upon the N content of the ambient atmosphere®'*'* and in particular ref.
[10] claims that the CN is formed by gas surface reactions between the dissociated nitrogen and particles ejected from
the target. These CN complex radicals are born with a population distribution in high vibrational levels that corresponds
to the ambient temperature of the surrounding plasma (assuming local thermodynamic equilibrium). This is supported
by the almost identical dependence of the CN vibrational temperature upon the delay time of observation. Figure 4
denotes this dependence for all the wavelengths used in the present study, each wavelength data set appearing with a
different symbol. In this graph the temperature values are normalised to the maximum value at the delay of 1ps and the
temperature values were in all cases calculated for the pulse energy of 35 mJ. A similar result was obtained however for
pulse energy values of 20 and 55 mJ as can be deduced from the data of table 1.
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Fig. 4: Dependence of vibrational temperature upon gating delay. The values are normalized with respect to the value corresponding
to the delay time of 1 ps.
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The decay pattern appearing in Fig. 4 is consistent with energy (heat) dissipation to the surrounding atmospheric
environment from a hot source in thermal equilibrium. The normalised values for the delay of 2us seem to be 65-66%
of the corresponding values at Ips delay. The values of temperature at the delays of 3 and 4 us were found to be 54-
57% and 46-49% of the values at lus delay respectively. The consistence of this dissipation rate for various
experimental parameters supports the existence of Local Thermodynamic Equilibrium (LTE): the CN vibrational
temperatures calculated reflect the plasma temperature within each observation window.
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Fig. 5: Dependence of vibrational temperature upon laser wavelength. The temperature values are normalized with respect to the ones
for A=355 nm.

Another striking result of the present study was the vibronic temperature dependence upon the laser wavelength for
fixed laser intensity. In Fig. 5 this dependence is shown for the pulse energy of 35 mJ/pulse. In this graph, different gate
delay values appear as different symbols and the temperatures are each time normalised to their highest value always
measured at the 355 nm wavelength.

This dependence of temperature upon the ablation wavelength at a fixed laser fluence indicates that the temperature
rises with decreasing laser wavelength and the normalised temperature values corresponding to 532 and 1064nm laser
wavelengths were found to be 88-84% and 71-67% of the values at 355 nm wavelength for various parameters. This
result was reproducible and consistent for all delay times of observation and indicates a thermal ablation mechanism,
supported by Burns et al'® and the arguments therein. In this context the higher the photon energy, the higher the
vibrational level in which the CN radicals are formed. resulting of course in higher plasma vibrational temperature.

The present study offers a new diagnostic tool to laser ablative surgery with respect to the transient temperature induced
to the ablated tissue. It has been shown here, that LTE conditions are valid since for different gate delays we observed a
hot source thermal dissipation pattern unchanged for varying parameters such as laser intensity and wavelength. From
this fact and the fact that thermal equilibrium exists between the plasma and the sample, since they are in direct contact,
the transient temperature could potentially yield the average temperature induced to the ablated sample. Further
experimental work is required to promote this novel diagnostic method that seems to have the advantage of utilizing the
ablating laser beam itself to probe the transient character of the average electronic temperature induced.

One additional outcome of the current work considered to be important towards the clarification of the mechanisms
involved in laser ablation, is that UV photons seem to induce bigger photothermal effects in the ablation plasma than
visible or infrared photons. This does not rule out the possibility of photochemical interaction in the UV region as well.
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However it corroborates the thermal interaction as a common mechanism in all optical spectral regions during ablation,
with the more energetic photons raising the plasma temperature to higher values.
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